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ABSTRACT 

The understanding of vapor bubble generation in an aqueous tissue near a fiber tip has 
required advanced two dimensional (2D) hydrodynamic simulations. For 1D spherical bubble 
expansion a simplified and useful Rayleigh-type model can be applied. For 2D bubble 
evolution, such a model does not exist. The present work proposes a Rayleigh-type model for 
2D bubble expansion that is faster and simpler than the 2D hydrodynamic simulations. The 
model is based on a flow potential representation of the hydrodynamic motion controlled by a 
Laplace equation and a moving boundary condition. We show that the 1D Rayleigh equation is 
a specific case of our model. The Laplace equation is solved for each time step by a finite 
element solver using a triangulation of the outside bubble region by a fast unstructured mesh 
generator. Two problems of vapor bubbles generated by short-pulse lasers near a fiber tip-are 
considered: (a) the outside region has no boundaries except the fiber, (b) the fiber and the 
bubble are confined in a long channel, which simulates a fiber in a vessel wall. Our simulations 
for problems of type (a) include features of bubble evolution as seen in experiments, including a 
collapse away from the fiber tip. A different behavior was obtained for problems of type (b) 
when the channel boundary is close to the fiber. In this case the bubble’s expansion and 
collapse are both extremely slow in the direction normal to this boundary and distortion of the 
bubble is observed. 
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1. INTRODUCTION 

In many medical therapies short-pulsed lasers in fibers are used on aqueous tissues 
generating vapor bubbles near the fiber tip.’ The bubble evolution requires two dimensional 
(2D) hydrodynamic simulations and therefore special computational capabilities.’ In 1D bubble 
evolution a simplified treatment exists, based on an extended Rayleigh model.3*J This equation 
is an ordinary differential equation and can be easily solved. For 2D bubble evolution such a 
treatment does not exist. In the present paper we derive a 2D Rayleigh type model which can be 
used in many medical applications. This method is much faster and simpler than the 2D 
hydrodynamic simulations. 

Our model is based on applying a flow potential @  related to the fluid velocity outside the 
bubble U = -V# , where @  is a solution of a Laplace equation.5 We assume as in the Rayleigh 
model that the inside of the bubble is uniform in pressure and density and derive a moving 
boundary condition for $ at the bubble boundary. For the limiting ID case our model gives the 
known 1D Rayleigh model. For the general case we solve a cylindrical Laplace equation with 
Dirichlet (4 = 0 ) and Neumann (normal component ( V$ jCv = 0 ) boundary conditions based on 



the bubble boundary motion. For every time step an Unstructured Mesh Finite Element Solver 
(UMFES) is used to update the triangulation of the region outside the bubble. 6.7 

Two cases are solved. In case (a) a fiber deposits instantaneously a short laser pulse in an 
aqueous system with a free boundary. We obtain solutions, which include the experimental 
characteristics of the expansion and the collapse of the bubble away from the fiber. In case (b) 
we consider a fiber and a bubble confined in a channel. This case includes characteristics of a 
fiber in a vessel. The presence of the channel reduces the fluid flow normal to the channel and 
causes a distortion in the bubble evolution and especially in the bubble collapse. 

The plan of the paper is as follows: Section 2 discusses the physical model. Section 3 
presents the numerical procedure. Computational results and discussion are given in Section 4 
and concluding remarks are presented in Section 5. 

2. THE PHYSICAL MODEL 

We consider a vapor bubble generated in an aqueous system by a short-pulse laser near a 
fiber tip. The bubble evolution requires 2D simulation.2’8 We assume that the bubble is uniform 
in pressure as in a Rayleigh bubble and that it evolves adiabatically with entropy So. Applying 
the bubble equation of state (EOS), any one of the quantities P (pressure) p (density), T 
(temperature), or E (energy) together with S, determine the others. For the region outside the 
bubble the relevant hydrodynamic equations are the continuity equation, 

aP ,t+v.(pi+o 

and the momentum equation for the fluid velocity U, 

(1) 

ai-i VP -++.vvu’=-- . 
at P 

(2) 

Outside the bubble we assume a flow potential 4 such that u’ = -04 and consequently obtain 
from Eq.(2) after integrating from 7 to 00, 

a@ 1 -dt+Y(V@)2 =h(w)-h(F) 

where dh = dp/p and 

h(+h(i)=$ , (4) 

(3) 

where h( 7)is the enthalpy at 7 and h(w) is the ambient enthalpy at large r. 
For many cases p = cons tan t we may replace in Eq.(4) h( 00) - h( 7 ) by (pm - p(y))/p and 

get 
u2 4 - p-pm -- 

dt p 2 ’ 
(5) 



d a where -=--I-ii.V , 
dt at 

p is the pressure at r’ and pm is the ambient pressure. By enforcing 

Eq.(5) at the bubble’s boundary, we get 

d@ P-p, U” -=--- 
dt p 2 ’ 

i.e. a relation between the pressure P, velocity U and the flow potential SD at the boundary. 
Equation (6) is the boundary condition for the bubble expansion. The velocity U varies along 
the bubble boundary and so does @  by Eq.(6). 

Applying Eq.( 1) for p = CURS tun t and using ti = -V@ , we obtain a Laplace equation for 
the region outside the bubble, 

V2@ =o. (7) 

The solution of equation (7) with the moving boundary condition, Eq.(6), present the main 
ingredients of our 2D time dependent bubble model. 

We can show that Eqs.(6) and (7) are consistent with the 1D Rayleigh equation. For the 
1D case the Laplace equation solution is 4 = C/r . Using u = -34 /Jr, we get @  = R’U / r . 
Inserting 4 in Eq.(5) and taking the boundary limit r=R we get, 

Rji++U’ =$(P-pm) , 

which is the 1D Rayleigh equation. 4 
By assuming that p = COKZS tan t we ignore the acoustic emission term. Its effect will be 

studied in future work. The acoustic emission can be approximated for a laser depositing its 
energy close to the fiber tip. The acoustic wave is emitted on a short time scale relative to the 
bubble expansion. The acoustic wave velocity for a uniform laser deposition is 
u, =(P-po.)/(pc,) and its energy is e, = LAp uJ2 12, where cs is the adiabatic sound 
speed, L and A are the laser deposition length and area, respectively. This acoustic energy can 
be reduced from the bubble initial energy thus taking into account acoustic emission. At the 
final collapse stage of the bubble in a 2D case, most of the energy is dissipated and the bubble 
rebound is usually small. 

In the following we assume that the boundary pressure, P, is the pressure Pb inside the 
bubble. In future work several effects as surface tension, viscosity, acoustic emission, materiel 
strength and failure, should be included in determining the boundary pressure.’ 

3. THE NUMERICAL PROCEDURE 

At the initial time t, =0 we set the flow potential Q5, = 0 and the velocity U, = 0 at the 

bubble’s boundary. The initial density inside the bubble is taken as p0 = I g /cm3 and the 
instantaneous laser energy deposition determines its initial temperature To, pressure PO and the 
constant entropy of the bubble SO . We use SO to obtain the adiabat of the gas inside the bubble- 
in a table of pressure as a function of density. An equation of state (EOS) of water is used based 
on NBS Steam Tables.” Throughout the calculations we used the Unstructured Mesh Finite 
r ,..-.,-. _r c-,-J .,... f’T‘\ry-n\ . ..‘-.pL :. ,- --:*A-: ,.... 1 5:,:+, ,-,.!.:-... \. ,..-.I. r. r*-I -3. ;-, F,.>+ial 



differential equations (as the Laplace equation) over an arbitrary bounded domain, with 
Dirichlet (4 = 0 ), Neumann (( V# jN = 0) or mixed boundary conditions.6*7 The density of the 
generated mesh is usually user-supplied, based on the nature of the given problem. 

At the nrh time step we perform the following: 

Step 1: The conditions on the bubble’s boundary for the potential flow are first updated by 
using Eq.(6), 

On = On-/ + At,-, (9) 

where P,,-, is the bubble pressure, p the liquid density, and CD,,-,, i/,,-, are the flow potential 

and the velocity at the bubble’s boundary during the (n - l)r” time step. 

Step 2: We solve Laplace equation for $,, outside the region using UMFES. We then update the 

velocities 0, at the bubble’s boundary using the Laplace solution and the relation, 

0, =-V@, . (10) 
where the flow potentials and the velocities are calculated at the finite element mesh points. _ 
Step 3: Update the bubble’s new boundary usin g the velocities calculated in Step 2 and the time 
interval At,. 

Step 4: Update the bubble density p, by calculating the bubble’s volume V, and using the 
relation, 

Plxl = PO% * (11) 

The adiabat is used to calculate the new bubble pressure P, . For the next step we use pn, P, 

and 0, in Eq.(9). 
In the numerical procedure we assume a vanishing flux on the surface of the fiber, i.e. 

up.! =(Vqu, =o, where N stands for the normal component. On the other walls we assume 
Dirichlet boundary conditions, i.e. $ = 0 provided they are far enough from the bubble. 

4. RESULTS AND DISCUSSION 

Throughout this work we assume a fiber radius rf = IOOpm and a homogeneous laser 
absorption length of n = 7jfm . A typical triangulation that depends inversely on the distance 
from the fiber tip is shown in Fig.( 1). We concentrated on two problems of different types: (a) a 
free boundary problem and (b) a bubble confined in a channel. 

_ 



4.1 Case (a): A bubble expanding in a free boundary region. 

In this case the boundaries of the outside region to the fiber are far from the bubble. The 
boundary conditions upon them can be taken either as 4 = 0 or (V@ JN = 0 . The initial bubble 
is the rectangle 0 I z _< 7,~um ,O 2 r _< 100,ffm (see Fig.( 1)). Although the boundary in Fig.( 1) is 
shown at 3OOpm , we used IOOOpm in each direction for the following calculations. 

-300 -200 -100 0 100 200 300 
2 (v) 

Figure 1: The initial bubble close to z=O and its outside region for a free boundary problem with 
a triangulation depending inversely on the distance from the fiber tip. 

Once the system absorbs the laser energy, the bubble expands until the ambient pressure 
on its boundary causes it to come to rest. Then the collapse phase starts and the bubble’s 
boundary moves in opposite direction. A typical expansion-collapse process is given in Fig.(2). 
In this case we assume pm = 10 bar,T, = 350°C , where To is the initial temperature of the 
bubble after the laser energy deposition. The bubble maximum expansion is at about 9~ and 
its maximum radii are about 250~ to the right direction (+z) and 200~ to the left (-z) and 
in the radial (r) directions relative to the fiber tip comer ( z, r ) = ( 0,100 ) . The expansion and 
collapse to the left and radial directions occur approximately at the same time, while that to the 
right direction lasts longer. These causes that the bubble collapses away from the fiber [see 
Fig.(2) at 17,~ 1. These results are consistent with experiments.” 

In Fig.( 2) at 0.5 ,D set we see a rapid growth of the bubble near the edge of the laser 
deposition region in the radial direction. This fact results from the solution of the Lalaplce 
equation that forces large velocities near comers. The behavior is analogous to the appearance 
of large electric fields induced at the neighborhood of charged edges. Increasing the numerical 
zones around the bubble boundary by a factor of four does not change the results. 
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Figure 2. Bubble expansion in a free boundary: bubble expansion and collapse in cylindrical _ 
coordinates r and z  for various times, where lengths are in ,um , times in ,,YS . Here 
pm = lObar, To = 35O’C. 



In Fig.(3) rR , r,,, , rL , the bubble dimension in the right direction relative to the fiber tip 
edge (O,O), and the bubble dimensions in radial and left directions, relative to the fiber tip edge 
at (0,100) respectively, are given as functions of time. It can be seen that the expansion to the 
right lasts longer relative to the normal and left expansions. A typical relation between the 
maximum diminution ml and the time to the maximum Z, for the various directions is, 

rm wn =&,4x .,where 4 ~0.7. 
From the solution to the flow potential 0 we get a positive value when the bubble is 

expanding away from the fiber and a negative value for the collapse stage. The flow potential 
has a typical almost 11171 d p d e en ence on the distance 171 from the fiber tip in the various 

directions. 

Fig.(4a) and (4b) represent the maximum bubble expansion in directions 
rR , rN , rL relative to the fiber tip edges (0,O) and (0,100) for constant ambient pressure pm and a 

varying initial bubble temperature To , and of a constant To and a varying pm. The main 
deviation is between the expansion to the right relative to the normal or left directions. The 
deviation increases with increasing To and decreasing pa. 

Figure 3: Free boundary: Bubble dimensions i-R , rN ,r~ vs time for the right ( r,,(J), normal 
(0,100 + r, ) and left (-r,JOO)directions respectively relative to the fiber tip edges. Here 

pm = lObar, To = 350’ C . 
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Figure 4: Bubble maximum distances in the left, normal and right directions relative to the fiber 
tip ( rL, r, , rR respectively), as (a) functions of T, for a constant pm = .5h- ; (b) functions of 

pm for a constant To = 200 Co. 

In the following discussion we presents a comparison between our 2D 
Rayleigh model and a hydrodynamic simulation presented in Ref.(2). The system in 
Ref.(2) is comprised of a fiber of radius 100 ,um which delivers energy of 0.317 mJ. The 
laser energy is deposited exponentially in the z direction with an absorption length of lb 
=7pm . In the radial direction the laser deposition is uniform up to 100 pm and beyond 
that decreases as a Gaussian with a factor of I/e in a length of 10 m. The energy 
included in the Gaussian is 20% of the total laser energy. In our 2D Rayleigh model we 
include only the energy confined inside the expanding bubble. We exclude 37% of the 
energy outside the absorption length lb. We also reduce 7% of the total energy included in 
the Gaussian tail, and 6% of the energy emitted as acoustic waves. Thus the amount of 
included energy, responsible for bubble expansion is about 50% of the total energy. This 
energy is spread homogeneously in front of the fiber tip in the 7,um absorption length. 
This energy imposes an initial bubble temperature of about 200 ‘C. i’ 

Figure (5) presents the average bubble radius defined in Ref.(2) 

RB =(,b2)“2 as a function of time, where 2a is the maximum expansion of the bubble 
along the symmetry axis z and b is the maximum bubble expansion in the radial direction 
for a given time. In Fig.(S) the solid lines are our model results for bubble initial 
temperatures 180 ‘C and 200 ‘C and the dash line is the result of Ref.(2) in Fig.(g). A 
general agreement of about 12Opm expansion and collapse time of about IO p~sec is 
obtained. The maximum in RB is obtained earlier in Ref.(2) at 4.5,~f set and in our model 
at about 6.5 p sec. We should remember that our system is just an approximation to the 
system solved in Ref. (2). For better agreement we should compare our model with 
hydrodynamic simulation for the same system. Such comparisons will be done in the - 
future. 
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Figure 5: Bubble average radius vs time for the free boundary case, with fiber radius 100 pm 

and pm = IO bar . Solid lines are our results for bubble initial temperatures To = 180 ‘C and 
200 ‘C. Dashed line is Ref.(2), Fig.@ ) result with energy delivered of 0.3 17 mJ. 

4.2 Case (b): A  bubble expanding in a confined channel. 

In the case of a bubble confined in a channel, the fiber and the channel are two coaxial 
cylinders with a distance d between them. The boundary condition on the channel’s face is 
homogeneous Neumann (no fluid penetration, (V$ jN = 0 ). The bubble for pm = 10 bar , 

To = 350°C and d = 250,~m , at several times is shown in Fig.(6). Initially the flows are 
similar in the three directions to the free boundary case. Then the radial flow interacts with the 
channel boundary and is significantly reduced. This increases the flow mainly to the right of the 
channel. The expansion and collapse times are larger relative to the free boundary case. 
However the collapse from the right and left directions are much faster than from the radial 
direction, which causes a large distortion in the bubble (see Fig.(6) at 27~s) . We will consider 
the later time collapse in future work. 

The slow expansion and collapse of the bubble in the radial direction is a consequence 
of the Neumann (normal component (V# )N = 0)) boundary condition on the channel. This 
condition presents the vessel wall elastic resistance to large deformations. While the flow 
potential on the bubble boundary 4 in Eq.(9) depends on the ambient pressure pm, the bubble 
boundary velocity depends on V$ . When the bubble expends closer to the channel wall the 
solution of the Laplace equation imposes a flat flow potential in the radial direction connecting 
the bubble boundary and the channel wall. The flat potential causes slow expansion and 
collapse in the radial direction. This is related to the incompressibility of the fluid, imposing 
higher flows in both the +z and --z directions. In contrast by selecting the Dirichlet boundary 
condition ($=O) on the channel boundary, we obtain significant increase of the expansion and 
collapse of the bubble in the radial direction. 

An important property, which we ignore here, is the acoustic wave emission by the. 
bubble. These waves can be partially reflected by the channel wall and affect the bubble 
expansion. The effect was considered in Ref. (2) by hydrodynamic simulation using an 



appropriate EOS for 
collapse. However, in 

the channel wall. This effect further delays the bubble expansion and 
Ref.(2) the channel wall resistance to large deformations was ignored. 
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Figure 6: Bubble confined in a channel: expansion and collapse in cylindrical coordinates r and 

z for various times where lengths are in ,um and times in ,I.&. Here pm = lobar, To = 350°C. 

The three distances t-R , r,$J , rL in the right, radial and left directions as functions of time are 
plotted in Fig.(7). Initially, expansion is similar in the three directions till the radial flow 
approaches the channel boundary and the radial distance is reduced relative to the others. The 
flow potentials from the bubble’s edges to the right and left directions are a decreasing function 
of the distance. The radial direction has a flat flow potential and consequently a very slow flow 
relative to the right and left directions. 

In Figs.@a), (8b) we present the expansion time-z needed for full expansion and the 
maximum distance r in all three directions as functions of the channel dimension d. This gives 
the asymptotic behavior which connects channeled systems and a’ free boundary system as 
d increases to large values. The expansion and collapse periods in radial direction are much 
longer in the channeled case than in the case of free boundaries. This causes the collapse from 
the right and from the left, to progress faster than from the other directions and consequently, a 
completely different structure of a collapsed bubble is obtained. 

Figure 7: Bubble confined in a channel: bubble dimensions vs time for the right, normal and left 
directions relative to the fiber tip edges, rR , ‘N , rL , respectively. Here pm = 10 bar and 

To =350°C. i‘ 
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Figure 8: (a) Time- z and (b) distance r for maximum expansion, as functions of d, for right, 

normal and left directions. Here poo = 10 bar , TO = 350’ C . 

5. CONCLUSIONS 

A potential flow method was applied to obtain a 2D Rayleigh type model for bubble 
expansion and collapse. The main assumption is that the inside of the bubble is homogeneous in 
pressure and density as is usual assumed in a Rayleigh model. The method is based on solving a 
Laplace equation for the flow potential in the outer bubble region based on a moving boundary 
condition for the bubble boundary. The 1D Rayleigh bubble expansion is a special case of our 
2D model. We find the method flexible to consider various tissue boundary conditions and 
geometry. We solve a fiber in a free boundary as well as a fiber in a channel. The method can 
be applied in various realistic medical applications. 

The 2D Rayleigh model presented here is much faster and simpler than the 2D 
compressible hydrodynamic simulation. It can be applied for design and understanding of 
fiber based medical therapies. The accuracy of the method should be tested by detail 
comparison with hydrodynamic simulations. i- 

This flow potential method should be extended to include other physical mechanisms 
that affect tissue behavior as: surface tension, viscosity, acoustic emission, and strength and 
failure properties. 
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